首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   663篇
  免费   63篇
  国内免费   54篇
  2023年   8篇
  2022年   14篇
  2021年   24篇
  2020年   23篇
  2019年   33篇
  2018年   23篇
  2017年   24篇
  2016年   35篇
  2015年   23篇
  2014年   36篇
  2013年   34篇
  2012年   28篇
  2011年   29篇
  2010年   34篇
  2009年   51篇
  2008年   36篇
  2007年   46篇
  2006年   29篇
  2005年   36篇
  2004年   18篇
  2003年   25篇
  2002年   22篇
  2001年   19篇
  2000年   14篇
  1999年   5篇
  1998年   12篇
  1997年   11篇
  1996年   5篇
  1995年   13篇
  1994年   7篇
  1993年   9篇
  1992年   11篇
  1991年   4篇
  1990年   3篇
  1989年   8篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1976年   1篇
排序方式: 共有780条查询结果,搜索用时 15 毫秒
101.
Behavioral and physiological responses to hypoxia were examined in three sympatric species of sharks: bonnethead shark Sphyrna tiburo, blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, Mustelus norrisi, using closed system respirometry. Sharks were exposed to normoxic and three levels of hypoxic conditions. Under normoxic conditions (5.5–6.4mg l–1), shark routine swimming speed averaged 25.5 and 31.0cm s–1 for obligate ram-ventilating S. tiburo and C. acronotus respectively, and 25.0cm s–1 for buccal-ventilating M. norrisi. Routine oxygen consumption averaged about 234.6 mg O2kg–1h–1 for S. tiburo, 437.2mg O2kg–1h–1 for C. acronotus, and 161.4mg O2 kg–1 h–1 for M. norrisi. For ram-ventilating sharks, mouth gape averaged 1.0cm whereas M. norrisi gillbeats averaged 56.0 beats min–1. Swimming speeds, mouth gape, and oxygen consumption rate of S. tiburo and C. acronotus increased to a maximum of 37–39cm s–1, 2.5–3.0cm and 496 and 599mg O2 kg–1 h–1 under hypoxic conditions (2.5–3.4mg l–1), respectively. M. norrisi decreased swimming speeds to 16cm s–1 and oxygen consumption rate remained similar. Results support the hypothesis that obligate ram-ventilating sharks respond to hypoxia by increasing swimming speed and mouth gape while buccal-ventilating smoothhound sharks reduce activity.  相似文献   
102.
In this paper, I present and analyse a model for the spatial dynamics of an epidemic following the point release of an infectious agent. Under conditions where the infectious agent disperses rapidly, relative to the dispersal rate of individuals, the resulting epidemic exhibits two distinct phases: a primary phase in which an epidemic wavefront propagates at constant speed and a secondary phase with a decelerating wavefront. The behavior of the primary phase is similar to standard results for diffusive epidemic models. The secondary phase may be attributed to the environmental persistence of the infectious agent near the release point. Analytic formulas are given for the invasion speeds and asymptotic infection levels. Qualitatively similar results appear to hold in an extended version of the model that incorporates virus shedding and dispersal of individuals.  相似文献   
103.
Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima were studied over the course of 1 year. On an annual basis, they spent 38% of the daytime feeding, 16% traveling, 14% in social interactions, and 32% engaged in resting. The effects of temperature and food-related factors (i.e., food distribution, feeding speed, and food abundance) on the seasonal variations of activity budget were examined by stepwise multiple regression analysis. When the temperature was low, the macaques decreased traveling and feeding time, in accordance with the prediction that endothermal animals save energy under severe thermoregulatory cost. When the feeding speed of available foods was slow, they spent more time feeding. When high-quality foods were abundant, they decreased feeding time. These macaques did not respond to fluctuations in food distribution. The present results indicate the importance of temperature, in addition to food-related factors, as a determinant of activity budgets.  相似文献   
104.
The ORF of the Cr.psbA4 intron of Chlamydomonas reinhardtii mediates efficient intron homing, and contains an H-N-H and possibly a GIY-YIG motif. The ORF was over-expressed in Escherichia coli without non-native amino acids, but was mostly insoluble. However, co-over-expression of E. coli chaperonins GroEL/GroES solubilized approximately 50% of the protein, which was purified by ion-exchange and heparin-affinity chromatography. Biochemical characterization showed that the protein is a double-strand-specific endonuclease that cleaves fused psbA exon 4-exon 5 DNA, and was named I-CreII. I-CreII has a relatively relaxed divalent metal ion requirement (Mg(2+), Mn(2+), Ca(2+), and Fe(2+) supported cleavage), is insensitive to salt <350 mM, and is stabilized by DNA. Cleavage of target DNA occurs close (4 nt on the top strand) to the intron-insertion site, and leaves 2-nt 3'-OH overhangs, similar to GIY-YIG endonucleases. The boundaries of the recognition sequence span approximately 30 bp, and encompass the cleavage and intron-insertion sites. Cleavage of heterologous psbA DNAs indicates the enzyme can tolerate multiple, but not all, substitutions in the recognition site. This work will facilitate further study of this novel endonuclease, which may also find use in site-specific manipulation of chloroplast DNA.  相似文献   
105.
A key assumption in evolutionary studies of locomotor adaptation is that standard laboratory measures of performance accurately reflect what animals do under natural circumstances. One widely examined measure of performance is maximum sprint speed, which is believed to be important for eluding predators, capturing prey, and defending territories. Previous studies linking maximum sprint speed to fitness have focused on laboratory measurements, and we suggest that such analyses may be appropriate for some species and intraspecific classes, but not others. We provide evidence for a general inverse relationship between maximum laboratory sprint speed and the percentage of maximum capacity that animals use when escaping from a threat in the field (the model of locomotor compensation). Further, absolute values of field escape speed and maximum laboratory speed are not significantly related when comparing across a diverse group of Anolis and lacertid lizards. We show that this pattern of locomotor compensation holds both within (i.e., among intraspecific classes) and among lizard species (with some exceptions). We propose a simple method of plotting field escape speed (y-axis) versus maximum laboratory speed (x-axis) among species and/or intraspecific classes that allows researchers to determine whether their study organisms are good candidates for relating laboratory performance to fitness. We suggest that species that reside directly on, or near the "best fitness line" (field escape speed = maximum laboratory speed) are most likely to bear fruit for such studies.  相似文献   
106.
This study examines the swimming speed in amictic females of Brachionus plicatilis in laboratory cultures. Five different stages were examined: recently hatched females, juveniles, adult non-ovigerous females, ovigerous females with 1 attached egg and ovigerous females with 2 attached eggs. We tested the speed at two temperatures, 15 °C and 25 °C, and two feeding conditions, presence and absence of microalgal cells. An automated motion analysis system was used to measure speed which was then video recorded. Swimming speed (μm s−1) increased with increasing body size. There was a slight decrease in the speed of adult females as the number of attached eggs increased. Swimming activity was higher at 25 °C than at 15 °C and in the absence of food than if microalgae were present. Average values under the different experimental conditions ranged between 500 μm s−1 for the recently hatched and fed females and 1500 μm s−1 for the adult non-ovigerous females in the absence of microalgae. Mass-specific swimming speed decreased with body mass increase.  相似文献   
107.
In the present work we report the variation in swimming speed ofVibrio cholerae with respect to the change in concentration of sodium ions in the medium. We have also studied the variation in swimming speed with respect to temperature. We find that the swimming speed initially shows a linear increase with the increase of the sodium ions in the medium and then plateaus. The range within which the swimming speed attains saturation is approximately the same at different temperatures.  相似文献   
108.
109.
The effects of various environmental factors such as pH (5, 6, 7, 8 and 9), temperature (30, 37 and 40°C) and rotational speed (150, 200 and 250 rpm) on the growth and the hepatitis B core antigen (HBcAg) production ofEscherichia coli W3110IQ were examined in the present study. The highest growth rate is achieved at PH 7, 37°C and at a rotational speed of 250 rpm which is 0.927 h−1. The effect of pH on cell growth is more substantial compared to other parameters; it recorded a 123% different between the highest growth rate (0.927 h−1) at pH 7 and lowest growth at pH 5. The highest protein yield is achieved at pH 9, rotational speed of 250 rpm and 40°C. The yield of protein at pH 7 is 154% higher compared to the lowest yield achieved at pH 5. There is about 28% different of the protein yield for theE. coli cultivated at 250 rpm compared to that at 150 rpm which has the lowest HBcAg yield. The yield of protein at 40°C is 38% higher compared to the lowest yield achieved, at 30°C.  相似文献   
110.
I used a simple mathematical model of the inverse dynamics of locomotion to estimate the minimum muscle masses required to maintain quasi-static equilibrium about the four main limb joints at mid-stance of fast running. Models of 10 extant taxa (a human, a kangaroo, two lizards, an alligator, and five birds) were analyzed in various bipedal poses to examine how anatomy, size, limb orientation, and other model parameters influence running ability. I examined how the muscle masses required for fast running compare to the muscle masses that are actually able to exert moments about the hip, knee, ankle, and toe joints, to see how support ability varies across the limb. I discuss the assumptions and limitations of the models, using sensitivity analysis to see how widely the results differed with feasible parameter input values. Even with a wide range of input values, the models validated the analysis procedure. Animals that are known to run bipedally were calculated as able to preserve quasi-static equilibrium about their hindlimb joints at mid-stance, whereas non-bipedal runners (iguanas and alligators) were recognized as having too little muscle mass to run quickly in bipedal poses. Thus, this modeling approach should be reliable for reconstructing running ability in extinct bipeds such as nonavian dinosaurs. The models also elucidated how key features are important for bipedal running capacity, such as limb orientation, muscle moment arms, muscle fascicle lengths, and body size. None of the animals modeled had extensor muscle masses acting about any one joint that were 7% or more of their body mass, which provides a reasonable limit for how much muscle mass is normally apportioned within a limb to act about a particular joint. The models consistently showed that a key biomechanical limit on running ability is the capacity of ankle extensors to generate sufficiently large joint moments. Additionally, the analysis reveals how large ratite birds remain excellent runners despite their larger size; they have apomorphically large extensor muscles with relatively high effective mechanical advantage. Finally, I reconstructed the evolution of running ability in the clade Reptilia, showing that the ancestors of extant birds likely were quite capable runners, even though they had already reduced key hip extensors such as M. caudofemoralis longus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号